A primary role of TET proteins in establishment and maintenance of De Novo bivalency at CpG islands
نویسندگان
چکیده
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs' role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.
منابع مشابه
Synthetic CpG islands reveal DNA sequence determinants of chromatin structure
The mammalian genome is punctuated by CpG islands (CGIs), which differ sharply from the bulk genome by being rich in G + C and the dinucleotide CpG. CGIs often include transcription initiation sites and display 'active' histone marks, notably histone H3 lysine 4 methylation. In embryonic stem cells (ESCs) some CGIs adopt a 'bivalent' chromatin state bearing simultaneous 'active' and 'inactive' ...
متن کاملRole of the Arabidopsis DRM Methyltransferases in De Novo DNA Methylation and Gene Silencing
Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, ...
متن کاملPredicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm
Cattle supply an important source of nutrition for humans in the world. CpG islands (CGIs) are very important and useful, as they carry functionally relevant epigenetic loci for whole genome studies. As a matter of fact, there have been no formal analyses of CGIs at the DNA sequence level in cattle genomes and therefore this study was carried out to fill the gap. We used hidden markov model alg...
متن کاملGeneral transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells.
Aberrant DNA methylation at CpG islands is thought to contribute to cancer initiation and progression, but mechanisms that establish and maintain DNA methylation status during tumorigenesis or normal development remain poorly understood. In this study, we used methyl-CpG immunoprecipitation to generate comparative DNA methylation profiles of healthy and malignant cells (acute leukemia and color...
متن کاملCell division is required for de novo methylation of CpG islands in bladder cancer cells.
Cell division is essential for tumor development and progression. Methylation-mediated silencing caused by aberrant de novo methylation of CpG islands located in the promoter regions of growth regulatory genes occurs frequently in human cancers. We investigated the relationship between cell division and de novo methylation to determine whether de novo methylation can occur in the absence of cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 44 شماره
صفحات -
تاریخ انتشار 2016